Advertisements
Advertisements
Question
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Options
A = `("a" + "b")/2`
G = `sqrt("ab")`
H = `(2"ab")/("a" + "b")`
A = GH
Solution
A = GH
APPEARS IN
RELATED QUESTIONS
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., then prove that:
If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
The third term of G.P. is 4. The product of its first 5 terms is ______.
The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.