English

Answer the following: For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P. - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.

Sum

Solution

Sn = 4(7n – 1) 

∴ Sn–1 = 4(7n–1 – 1)

But, tn = Sn – Sn–1

= 4(7n – 1) – 4(7n–1 – 1)

= 4(7n – 1 – 7n–1 + 1)

= 4(7n – 7n–1)

= 4(7n–1+1 – 7n–1)

= 4.7n–1 (7 – 1)

∴ tn = 24.7n–1

∴ tn–1 = `24.7^(("n" - 1) - 1)`

= 24.7n–2

The sequence is a G.P., if `"t"_"n"/"t"_("n" - 1)` = constant for all n ∈ N.

∴ `"t"_"n"/"t"_("n" - 1) = 24.7^("n" - 1)/24.7^("n" - 2) = 7^("n" - 1)/(7^("n" - 1).7^((-1))`

= 7

= constant, for all n ∈ N

∴ the given sequence is a G.P.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Miscellaneous Exercise 2.2 [Page 41]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (7) | Page 41

RELATED QUESTIONS

Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Find the geometric means of the following pairs of number:

−8 and −2


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


For the G.P. if r = `1/3`, a = 9 find t7


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


The numbers 3, x, and x + 6 form are in G.P. Find x


The numbers 3, x, and x + 6 form are in G.P. Find nth term


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For a G.P. if a = 2, r = 3, Sn = 242 find n


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


Express the following recurring decimal as a rational number:

`51.0bar(2)`


Find : `sum_("n" = 1)^oo 0.4^"n"`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×