Advertisements
Advertisements
Question
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Options
3
5
15
– 5
Solution
If common ratio of the G.P is 5, 5th term is 1875, the first term is 3
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that:
\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Insert 5 geometric means between 16 and \[\frac{1}{4}\] .
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. if S5 = 1023 , r = 4, Find a
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.