Advertisements
Advertisements
Question
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
Options
sin 18°
2 cos18°
cos 18°
2 sin 18°
Solution
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is 2 sin 18°.
Explanation:
Since tn = tn+1 + tn+2
⇒ arn–1 = arn + arn+1
⇒ 1 = r + r2
r = `(-1 +- sqrt(5))/2`
Since r > 0
Therefore, r = `2 (sqrt(5) - 1)/4`
= 2 sin 18°
APPEARS IN
RELATED QUESTIONS
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
For the G.P. if r = `1/3`, a = 9 find t7
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The numbers 3, x, and x + 6 form are in G.P. Find x
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. If t3 = 20 , t6 = 160 , find S7
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.