Advertisements
Advertisements
Question
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Options
(a) \[\frac{1}{x} + \frac{1}{y} = 2\]
(b) \[\frac{1}{x} + \frac{1}{y} = \frac{1}{2}\]
(c) \[\frac{1}{x} + \frac{1}{y} = \frac{2}{a}\]
(d) \[\frac{1}{x} + \frac{1}{y} = \frac{2}{b}\]
Solution
(d) \[\frac{1}{x} + \frac{1}{y} = \frac{2}{b}\]
\[\text{ a, b and c are in G . P } . \]
\[ \therefore b^2 = ac . . . . . . . . (i)\]
\[\text{ a, x and b are in A . P } . \]
\[ \therefore 2x = a + b . . . . . . . . (ii)\]
\[\text{ Also, b, y and c are in A . P } . \]
\[ \therefore 2y = b + c \]
\[ \Rightarrow 2y = b + \frac{b^2}{a} \left[ \text{ Using } (i) \right]\]
\[ \Rightarrow 2y = b + \frac{b^2}{\left( 2x - b \right)} \left[ \text{ Using } (ii) \right]\]
\[ \Rightarrow 2y = \frac{b\left( 2x - b \right) + b^2}{\left( 2x - b \right)}\]
\[ \Rightarrow 2y = \frac{2bx - b^2 + b^2}{\left( 2x - b \right)}\]
\[ \Rightarrow 2y = \frac{2bx}{\left( 2x - b \right)}\]
\[ \Rightarrow y = \frac{bx}{\left( 2x - b \right)}\]
\[ \Rightarrow y\left( 2x - b \right) = bx\]
\[ \Rightarrow 2xy - by = bx\]
\[ \Rightarrow bx + by = 2xy\]
\[\text{ Dividing both the sides by xy }: \]
\[ \Rightarrow \frac{1}{y} + \frac{1}{x} = \frac{2}{b}\]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the following serie to infinity:
`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If p, q be two A.M.'s and G be one G.M. between two numbers, then G2 =
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
The numbers 3, x, and x + 6 form are in G.P. Find nth term
For a G.P. if S5 = 1023 , r = 4, Find a
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1
The sum or difference of two G.P.s, is again a G.P.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.