Advertisements
Advertisements
Question
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
Solution
a, b, c and d are in G.P.
\[\therefore b^2 = ac\]
\[bc = ad\]
\[ c^2 = bd\] .......(1)
\[\text { LHS } = \frac{ab - cd}{b^2 - c^2}\]
\[ = \frac{ab - cd}{ac - bd} \left[\text { Using } (1) \right]\]
\[ = \frac{\left( ab - cd \right)b}{\left( ac - bd \right)b} \]
\[ = \frac{a b^2 - bcd}{\left( ac - bd \right)b}\]
\[ = \frac{a\left( ac \right) - c\left( c^2 \right)}{\left( ac - bd \right)b} \left[ \text { Using } (1) \right]\]
\[ = \frac{a^2 c - c^3}{\left( ac - bd \right)b}\]
\[ = \frac{c\left( a^2 - c^2 \right)}{\left( ac - bd \right)b}\]
\[ = \frac{\left( a + c \right)\left( ac - c^2 \right)}{\left( ac - bd \right)b}\]
\[ = \frac{\left( a + c \right)\left( ac - bd \right)}{\left( ac - bd \right)b} \left[\text{ Using } (1) \right]\]
\[ = \frac{\left( a + c \right)}{b} = \text { RHS }\]
APPEARS IN
RELATED QUESTIONS
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., then prove that:
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
For the G.P. if a = `7/243`, r = 3 find t6.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
The third term of G.P. is 4. The product of its first 5 terms is ______.
The sum or difference of two G.P.s, is again a G.P.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.