Advertisements
Advertisements
Question
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
Solution
We have,
0.6 + 0.66 +.666 + ... to n terms
\[S_n\] = 6 [0.1 + 0.11+ 0.111 + ... n terms]
\[= \frac{6}{9}\left( 0 . 9 + 0 . 99 + 0 . 999 + . . . \text { n terms } \right)\]
\[ = \frac{6}{9}\left\{ \frac{9}{10} + \frac{9}{100} + \frac{9}{1000} + . . .\text { n terms } \right\}\]
\[ = \frac{6}{9}\left\{ \left( 1 - \frac{1}{10} \right) + \left( 1 - \frac{1}{100} \right) + \left( 1 - \frac{1}{1000} \right) + . . . \text { n terms } \right\} \]
\[ = \frac{6}{9}\left\{ n - \left( \frac{1}{10} + \frac{1}{{10}^2} + \frac{1}{{10}^3} + . . . \text { n terms } \right) \right\} \]
\[ = \frac{6}{9}\left\{ n - \frac{1}{10}\frac{\left( 1 - \left( \frac{1}{10} \right)^n \right)}{\left( 1 - \frac{1}{10} \right)} \right\}\]
\[ = \frac{6}{9}\left\{ n - \frac{1}{9}\left( 1 - \frac{1}{{10}^n} \right) \right\}\]
APPEARS IN
RELATED QUESTIONS
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c are in G.P., prove that:
\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c, d are in G.P., prove that:
\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Find the geometric means of the following pairs of number:
2 and 8
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For a G.P. If t4 = 16, t9 = 512, find S10
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Answer the following:
Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.