English

Answer the following: If for a G.P. t3 = 13, t6 = 181 find r - Mathematics and Statistics

Advertisements
Advertisements

Question

Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r

Sum

Solution

Given, t3 = `1/3`, t6 = `1/81`

tn = arn–1

∴ t3 = ar2 

∴ ar2 = `1/3`

∴ a = `1/(3"r"^2)`    ...(i)

Also, t6 = ar5

∴ ar5 = `1/81`

∴ `1/(3"r"^2) xx "r"^5 = 1/81`   ...[From (i)]

∴ r3 = `1/27`

∴ r = `1/3`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Sequences and Series - Miscellaneous Exercise 2.2 [Page 42]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
Chapter 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (22) | Page 42

RELATED QUESTIONS

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Find the sum to n terms of the sequence, 8, 88, 888, 8888… .


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Find :

the 12th term of the G.P.

\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Express the recurring decimal 0.125125125 ... as a rational number.


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


Find the geometric means of the following pairs of number:

−8 and −2


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


For a G.P. If t4 = 16, t9 = 512, find S10


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×