Advertisements
Advertisements
Question
Answer the following:
If for a G.P. t3 = `1/3`, t6 = `1/81` find r
Solution
Given, t3 = `1/3`, t6 = `1/81`
tn = arn–1
∴ t3 = ar2
∴ ar2 = `1/3`
∴ a = `1/(3"r"^2)` ...(i)
Also, t6 = ar5
∴ ar5 = `1/81`
∴ `1/(3"r"^2) xx "r"^5 = 1/81` ...[From (i)]
∴ r3 = `1/27`
∴ r = `1/3`
APPEARS IN
RELATED QUESTIONS
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Find the sum of the following series:
0.5 + 0.55 + 0.555 + ... to n terms.
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Express the recurring decimal 0.125125125 ... as a rational number.
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Find the geometric means of the following pairs of number:
−8 and −2
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
For a G.P. If t4 = 16, t9 = 512, find S10
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.