English

The Product (32), (32)1/6 (32)1/36 ... to ∞ is Equal to - Mathematics

Advertisements
Advertisements

Question

The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 

Options

  • (a) 64

  • (b) 16 

  • (c) 32 

  • (d) 0 

MCQ

Solution

(a) 64 

\[32 \times {32}^\frac{1}{6} \times {32}^\frac{1}{36} \times . . . \infty \]
\[ = {32}^\left( 1 + \frac{1}{6} + \frac{1}{36} + . . . \infty \right) \]
\[ = {32}^\left( \frac{1}{1 - \frac{1}{6}} \right) [\because \text{ it is a G . P } . ]\]
\[ = {32}^\left( \frac{6}{5} \right) \]
\[ = \left( 2^5 \right)^\left( \frac{6}{5} \right) \]
\[ = 2^6 \]
\[ = 64\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 20: Geometric Progression - Exercise 20.8 [Page 58]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 20 Geometric Progression
Exercise 20.8 | Q 22 | Page 58

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find three numbers in G.P. whose sum is 38 and their product is 1728.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Find the geometric means of the following pairs of number:

−8 and −2


Write the product of n geometric means between two numbers a and b

 


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


The numbers 3, x, and x + 6 form are in G.P. Find x


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Answer the following:

If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×