मराठी

The Product (32), (32)1/6 (32)1/36 ... to ∞ is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 

पर्याय

  • (a) 64

  • (b) 16 

  • (c) 32 

  • (d) 0 

MCQ

उत्तर

(a) 64 

\[32 \times {32}^\frac{1}{6} \times {32}^\frac{1}{36} \times . . . \infty \]
\[ = {32}^\left( 1 + \frac{1}{6} + \frac{1}{36} + . . . \infty \right) \]
\[ = {32}^\left( \frac{1}{1 - \frac{1}{6}} \right) [\because \text{ it is a G . P } . ]\]
\[ = {32}^\left( \frac{6}{5} \right) \]
\[ = \left( 2^5 \right)^\left( \frac{6}{5} \right) \]
\[ = 2^6 \]
\[ = 64\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.8 | Q 22 | पृष्ठ ५८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


The two geometric means between the numbers 1 and 64 are 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For the G.P. if r = `1/3`, a = 9 find t7


For the G.P. if a = `7/243`, r = 3 find t6.


For the G.P. if a = `2/3`, t6 = 162, find r.


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. if a = 2, r = 3, Sn = 242 find n


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×