मराठी

If 5th, 8th and 11th Terms of a G.P. Are P. Q and S Respectively, Prove that Q2 = Ps. - Mathematics

Advertisements
Advertisements

प्रश्न

If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.

उत्तर

\[\text { Let a be the first term and r be the common ratio of the given G . P } . \]

\[ \therefore p = 5^{th}\text {  term } \]

\[ \Rightarrow p = a r^4 . . . \left( 1 \right)\]

\[q = 8^{th} \text { term } \]

\[ \Rightarrow q = a r^7 . . . \left( 2 \right)\]

\[s = {11}^{th} \]

\[ \Rightarrow s = a r^{10} . . . \left( 3 \right)\]

\[\text { Now, } q^2 = \left( a r^7 \right)^2 = a^2 r^{14} \]

\[ \Rightarrow \left( a r^4 \right) \left( a r^{10} \right) = ps \left[ \text { From } \left( 1 \right) \text { and } \left( 3 \right) \right]\]

\[ \therefore q^2 = ps\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.1 | Q 12 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Evaluate `sum_(k=1)^11 (2+3^k )`


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]


Find:
the ninth term of the G.P. 1, 4, 16, 64, ...


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.

 

Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the rational number whose decimal expansion is \[0 . 423\].


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. a = 2, r = `-2/3`, find S6


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×