मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find rr∑r=0∞(-8)(-12)r - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 

बेरीज

उत्तर

`sum_("r" = 0)^oo (-8)(-1/2)^"r" = -8 sum_("r" = 1)^oo (-1/2)^"r"`

= `-8[(-1/2) + (-1/2)^2 + (-1/2)^3 + ...]`   ...(1)

The terms `(-1/2), (-1/2)^2, (-1/2)^3  ...` are in G.P. with a = `-1/2`, r = `-1/2`.

Since |r| = `|-1/2| = 1/2 < 1`, the sum to infinity of this G.P. exist and

S = `"a"/(1 - "r")`

= `((-1/2))/(1 - (-1/2))`

= `-1/2 xx 2/3`

= `(-1)/3`

∴ from (1),

`sum_("r" = 1)^oo (-8)(-1/2)^"r" = -8(-1/3) = 8/3`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.3 [पृष्ठ ३४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Exercise 2.3 | Q 6. (iii) | पृष्ठ ३४

संबंधित प्रश्‍न

Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


The numbers x − 6, 2x and x2 are in G.P. Find x


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


For a G.P. if S5 = 1023 , r = 4, Find a


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


For a G.P. If t3 = 20 , t6 = 160 , find S7


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×