मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.

बेरीज

उत्तर

p, q, r, s are in G.P.

∴ `"q"/"p" = "r"/"q" = "s"/"r"`

Let `"q"/"p" = "r"/"q" = "s"/"r"` = k

∴ q = pk, r = qk, s = k

We have to prove that p + q, q + r, r + s are in G.P.

i.e. to prove that `("q" + "r")/("p" + "q") = ("r" + "s")/("q" + "r")`

L.H.S. = `("q" + "r")/("p" + "q") = ("q" + "qk")/("p" + "pk") = ("q"(1 + "k"))/("p"(1 + "k")) = "q"/"p"` = k

R.H.S. = `("r" + "s")/("q" + "r") = ("r" + "rk")/("q" + "qk") = ("r"(1 + "k"))/("q"(1 + "k")) = "r"/"q"` = k

∴  `("q" + "r")/("p" + "q") = ("r" + "s")/("q" + "r")`

∴  p + q, q + r, r + s are in G.P.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.1 [पृष्ठ २७]

APPEARS IN

संबंधित प्रश्‍न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]


The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is 


If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


The two geometric means between the numbers 1 and 64 are 


The numbers x − 6, 2x and x2 are in G.P. Find nth term


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


For a G.P. If t3 = 20 , t6 = 160 , find S7


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Find : `sum_("r" = 1)^oo (-1/3)^"r"`


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×