मराठी

Find the Sum of the Following Serie to Infinity: 8 + 4 √ 2 + 4 + ... ∞ - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞

उत्तर

\[\text {  In the given G . P . , first term, } a = 8\]

\[ \text { and common ratio, } r = \frac{1}{\sqrt{2}}\]

\[\text { Hence, the sum S to infinity is given by } S = \frac{a}{1 - r} = \frac{8}{1 - \frac{1}{\sqrt{2}}} = \left( 2 + \sqrt{2} \right) . \]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.4 | Q 1.2 | पृष्ठ ३९

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Evaluate `sum_(k=1)^11 (2+3^k )`


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

\[\frac{a}{1 + i} + \frac{a}{(1 + i )^2} + \frac{a}{(1 + i )^3} + . . . + \frac{a}{(1 + i )^n} .\]


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Express the recurring decimal 0.125125125 ... as a rational number.


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×