मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Find: ∑r=1105×3r - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Find: `sum_("r" = 1)^10 5 xx 3^"r"`

बेरीज

उत्तर

`sum_("r" = 1)^10 5 xx 3^"r"`

= 5 x 3 + 5 x 32 + 5 x 33 + … + 5 x 310

= 5[3 + 32 + 33 + ... + 310]

Here, 3, 32, 33, ..., 310 are the terms in G.P. with

a = 3, r = 3

`sum_("r" = 1)^10 5 xx 3^"r" = 5*(3[3^10 - 1])/(3 - 1)`

= `15/2(3^10 - 1)`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३२]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Exercise 2.2 | Q 11. (ii) | पृष्ठ ३२

संबंधित प्रश्‍न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

2, 6, 18, ... to 7 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.


Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c, d are in G.P., prove that:

\[\frac{1}{a^2 + b^2}, \frac{1}{b^2 - c^2}, \frac{1}{c^2 + d^2} \text { are in G . P } .\]


If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


The fractional value of 2.357 is 


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If pq be two A.M.'s and G be one G.M. between two numbers, then G2


For the G.P. if r = `1/3`, a = 9 find t7


For the following G.P.s, find Sn

3, 6, 12, 24, ...


Select the correct answer from the given alternative.

If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The sum or difference of two G.P.s, is again a G.P.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×