Advertisements
Advertisements
प्रश्न
The fractional value of 2.357 is
पर्याय
(a) 2355/1001
(b) 2379/997
(c) 2355/999
(d) none of these
उत्तर
(c) \[\frac{2355}{999}\]
\[2 . \bar{{357}} = 2 . 0 + 0 . 357 + 0 . 000357 + 0 . 000000357 + . . . \infty \]
\[ \Rightarrow 2 . \bar{{357}} = 2 + \left[ \frac{357}{{10}^3} + \frac{357}{{10}^6} + \frac{357}{{10}^9} + . . . \infty \right]\]
\[ \Rightarrow 2 . \bar{{357}} = 2 + \frac{\frac{357}{{10}^3}}{1 - \frac{1}{{10}^3}}\]
\[ \Rightarrow 2 . \bar{{357}} = 2 + \frac{357}{999}\]
\[ \Rightarrow 2 . \bar{{357}} = \frac{2355}{999}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Given a G.P. with a = 729 and 7th term 64, determine S7.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2 + b2, ab + bc, b2 + c2
If a, b, c, d are in G.P., prove that:
(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.
Find the geometric means of the following pairs of number:
−8 and −2
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
The two geometric means between the numbers 1 and 64 are
Which term of the G.P. 5, 25, 125, 625, … is 510?
The numbers 3, x, and x + 6 form are in G.P. Find x
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. If t4 = 16, t9 = 512, find S10
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.