Advertisements
Advertisements
प्रश्न
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
पर्याय
(a) \[\frac{p - q}{q - r}\]
(b) \[\frac{q - r}{p - q}\]
(c) pqr
(d) none of these
उत्तर
(b) \[\frac{q - r}{p - q}\]
Let a be the first term and d be the common difference of the given A.P.
Then, we have:
\[p^{th} \text{ term }, a_p = a + \left( p - 1 \right)d\]
\[ q^{th} \text{ term }, a_q = a + \left( q - 1 \right)d\]
\[ r^{th} \text{ term }, a_r = a + \left( r - 1 \right)d\]
\[\text{ Now, according to the question the p^{th} , the q^{th} and the r^{th} terms are in G . P } . \]
\[ \therefore \left( a + \left( q - 1 \right)d \right)^2 = \left( a + \left( p - 1 \right)d \right) \times \left( a + \left( r - 1 \right)d \right)\]
\[ \Rightarrow a^2 + 2a \left( q - 1 \right)d + \left( \left( q - 1 \right)d \right)^2 = a^2 + ad\left( r - 1 + p - 1 \right) + \left( p - 1 \right) \left( r - 1 \right) d^2 \]
\[ \Rightarrow ad\left( 2q - 2 - r - p + 2 \right) + d^2 \left( q^2 - 2q + 1 - pr + p + r - 1 \right) = 0\]
\[ \Rightarrow a\left( 2q - r - p \right) + d\left( q^2 - 2q - pr + p + r \right) = 0 \left( \because d cannot be 0 \right)\]
\[ \Rightarrow a = - \frac{\left( q^2 - 2q - pr + p + r \right)d}{\left( 2q - r - p \right)}\]
\[ \therefore \text{ Common ratio }, r = \frac{a_q}{a_p}\]
\[ = \frac{a + \left( q - 1 \right)d}{a + \left( p - 1 \right)d}\]
\[ = \frac{\frac{\left( q^2 - 2q - pr + p + r \right)d}{\left( p + r - 2q \right)} + \left( q - 1 \right)d}{\frac{\left( q^2 - 2q - pr + p + r \right)d}{\left( p + r - 2q \right)} + \left( p - 1 \right)d}\]
\[ = \frac{q^2 - 2q - pr + p + r + pq + rq - 2 q^2 - p - r + 2q}{q^2 - 2q - pr + p + r + p^2 + pr - 2pq - p - r + 2q}\]
\[ = \frac{pq - pr - q^2 + qr}{p^2 + q^2 - 2pq}\]
\[ = \frac{p\left( q - r \right) - q\left( q - r \right)}{\left( p - q \right)^2}\]
\[ = \frac{\left( p - q \right)\left( q - r \right)}{\left( p - q \right)^2}\]
\[ = \frac{\left( q - r \right)}{\left( p - q \right)}\]
\[ \]
\[\]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following series:
0.6 + 0.66 + 0.666 + .... to n terms
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
Find the rational number whose decimal expansion is \[0 . 423\].
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Express the following recurring decimal as a rational number:
`0.bar(7)`
Find : `sum_("n" = 1)^oo 0.4^"n"`
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
Answer the following:
If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.
The third term of a G.P. is 4, the product of the first five terms is ______.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.