Advertisements
Advertisements
प्रश्न
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
उत्तर
Let the five numbers in G.P. be `"a"/"r"^2, "a"/"r", "a", "ar","ar"^2`
According to the given conditions,
`"a"/"r"^2 xx "a"/"r" xx "a" xx "ar" xx "ar"^2` = 1024
∴ a5 = 45
∴ a = 4 ...(i)
Also, ar2 = a2
∴ r2 = a
∴ r2 = 4 ...[From (i)]
∴ r = ± 2
When a = 4, r = 2
`"a"/"r"^2` = 1, `"a"/"r"` = 2, a = 4, ar = 8, ar2 = 16
When a = 4, r = – 2
`"a"/"r"^2` = 1, `"a"/"r"` = −2, a = 4, ar = −8, ar2 = 16
∴ the five numbers are 1, 2, 4, 8, 16 or 1, – 2, 4, – 8, 16.
APPEARS IN
संबंधित प्रश्न
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.
Find three numbers in G.P. whose sum is 38 and their product is 1728.
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c are in G.P., prove that log a, log b, log c are in A.P.
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in G.P., prove that the following is also in G.P.:
a3, b3, c3
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.
For a G.P. if S5 = 1023 , r = 4, Find a
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Select the correct answer from the given alternative.
The common ratio for the G.P. 0.12, 0.24, 0.48, is –
Answer the following:
Find three numbers in G.P. such that their sum is 35 and their product is 1000
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
The sum or difference of two G.P.s, is again a G.P.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.