मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.

बेरीज

उत्तर

Since mosquitoes are growing at a rate of 10% and there were 200 mosquitoes, in the beginning, the number of mosquitoes in successive years form a G.P. with a = 200 and r = `1+10/100=11/10`

Number of mosquitoes after 10 years

= t11

= ar11–1

= `200(11/10)^10`

= 200 (1.1)10

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.1 [पृष्ठ २८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Exercise 2.1 | Q 14. (ii) | पृष्ठ २८

संबंधित प्रश्‍न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


The seventh term of a G.P. is 8 times the fourth term and 5th term is 48. Find the G.P.


Find the sum of the following geometric progression:

1, 3, 9, 27, ... to 8 terms;


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Find the rational number whose decimal expansion is \[0 . 423\].


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.

 

 

 


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


The two geometric means between the numbers 1 and 64 are 


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

9, 8.1, 7.29, ...


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×