Advertisements
Advertisements
प्रश्न
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
उत्तर
\[\text { a, b and c are in A . P }. \]
\[ \therefore 2b = a + c . . . . . . . (i)\]
\[\text { Also, b, c and d are in G . P } . \]
\[ \therefore c^2 = bd . . . . . . . (ii)\]
\[\text {And } \frac{1}{c}, \frac{1}{d} \text { and } \frac{1}{e} \text { are in A . P .} \]
\[ \therefore \frac{2}{d} = \frac{1}{c} + \frac{1}{e} \]
\[ \Rightarrow d = \frac{2ce}{c + e} . . . . . . . (iii)\]
\[ \because c^2 = bd \left[ \text { From }(ii) \right] \]
\[ \Rightarrow c^2 = \left( \frac{a + c}{2} \right)\left( \frac{2ce}{c + e} \right) \left[ \text { Using } (i) \text { and } (iii) \right]\]
\[ \Rightarrow c^2 \left( c + e \right) = ce\left( a + c \right)\]
\[ \Rightarrow c^2 + ce = ae + ec\]
\[ \Rightarrow c^2 = ae\]
\[\text { Therefore, a, c and e are also in G . P } . \]
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
Insert two numbers between 3 and 81 so that the resulting sequence is G.P.
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
x3, x5, x7, ... to n terms
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Evaluate the following:
\[\sum^{10}_{n = 2} 4^n\]
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
The numbers 3, x, and x + 6 form are in G.P. Find x
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Express the following recurring decimal as a rational number:
`2.3bar(5)`
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.