Advertisements
Advertisements
प्रश्न
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
उत्तर
\[\text { a, b and c are in A . P }. \]
\[ \therefore 2b = a + c . . . . . . . (i)\]
\[\text { Also, b, c and d are in G . P } . \]
\[ \therefore c^2 = bd . . . . . . . (ii)\]
\[\text {And } \frac{1}{c}, \frac{1}{d} \text { and } \frac{1}{e} \text { are in A . P .} \]
\[ \therefore \frac{2}{d} = \frac{1}{c} + \frac{1}{e} \]
\[ \Rightarrow d = \frac{2ce}{c + e} . . . . . . . (iii)\]
\[ \because c^2 = bd \left[ \text { From }(ii) \right] \]
\[ \Rightarrow c^2 = \left( \frac{a + c}{2} \right)\left( \frac{2ce}{c + e} \right) \left[ \text { Using } (i) \text { and } (iii) \right]\]
\[ \Rightarrow c^2 \left( c + e \right) = ce\left( a + c \right)\]
\[ \Rightarrow c^2 + ce = ae + ec\]
\[ \Rightarrow c^2 = ae\]
\[\text { Therefore, a, c and e are also in G . P } . \]
APPEARS IN
संबंधित प्रश्न
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
Find the sum of the following geometric progression:
2, 6, 18, ... to 7 terms;
Find the sum of the following geometric progression:
1, −1/2, 1/4, −1/8, ... to 9 terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Express the recurring decimal 0.125125125 ... as a rational number.
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Find the rational numbers having the following decimal expansion:
\[0 . 6\overline8\]
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
(a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
Insert 6 geometric means between 27 and \[\frac{1}{81}\] .
If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
For the G.P. if a = `7/243`, r = 3 find t6.
For the following G.P.s, find Sn
3, 6, 12, 24, ...
For a G.P. a = 2, r = `-2/3`, find S6
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.