Advertisements
Advertisements
प्रश्न
The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.
उत्तर
Here, common ratio, r = 3
nth term, an = 486
Sn = 728
\[a_n = 486 \]
\[ \Rightarrow a r^{n - 1} = 486\]
\[ \Rightarrow a \left( 3 \right)^{n - 1} = 486 \]
\[ \Rightarrow a \left( 3 \right)^n = 486 \times 3 \]
\[ \Rightarrow a \left( 3 \right)^n = 1458 . . . \left( i \right)\]
\[\text { Now, } S_n = 728\]
\[ \Rightarrow 728 = a \left( \frac{3^n - 1}{3 - 1} \right) \]
\[ \Rightarrow 728 = \left\{ \frac{a \left( 3 \right)^n - a}{2} \right\}\]
\[ \Rightarrow 1456 = a \left( 3 \right)^{n - 1} - a \]
\[ \Rightarrow 1456 = 1458 - a \left[ \text { From } \left( i \right) \right]\]
\[ \Rightarrow a = 1458 - 1456 \]
\[ \Rightarrow a = 2\]
APPEARS IN
संबंधित प्रश्न
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
Find the geometric means of the following pairs of number:
−8 and −2
The fractional value of 2.357 is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
The numbers x − 6, 2x and x2 are in G.P. Find x
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
Express the following recurring decimal as a rational number:
`0.bar(7)`
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("r" = 1)^oo 4(0.5)^"r"`
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.