हिंदी

Express the following recurring decimal as a rational number: 0.7¯ - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Express the following recurring decimal as a rational number:

`0.bar(7)`

योग

उत्तर

`0.bar(7)` = 0.7777 ...

= 0.7 + 0.07 + 0.007 + …

The terms are in G.P.

∴ a = 0.7, r = `0.07/0.7` = 0.1

Since |r| = |0.1| < 1

∴ Sum to infinity exists.

∴ Sum to infinity = `"a"/(1 - "r")`

= `0.7/(1 - 0.1)`

= `0.7/0.9`

= `7/9`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.3 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.3 | Q 2. (i) | पृष्ठ ३३

संबंधित प्रश्न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Find:

the 10th term of the G.P.

\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]

 


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


The fourth term of a G.P. is 27 and the 7th term is 729, find the G.P.


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


Find the sum of the following geometric series:

\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in G.P., then prove that:

\[\frac{a^2 + ab + b^2}{bc + ca + ab} = \frac{b + a}{c + b}\]

If a = 1 + b + b2 + b3 + ... to ∞, then write b in terms of a.


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


For the G.P. if a = `7/243`, r = 3 find t6.


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


For the following G.P.s, find Sn

3, 6, 12, 24, ...


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


Answer the following:

Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×