Advertisements
Advertisements
प्रश्न
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
उत्तर
Here,
\[\text { First term }, a = \frac{- 3}{4} \]
\[\text { Common ratio, } r = \frac{a_2}{a_1} = \frac{\frac{1}{2}}{- \frac{3}{4}} = - \frac{2}{3}\]
\[ \therefore 10th \text { term }= a_{10} = a r^{(10 - 1)} = \left( \frac{- 3}{4} \right) \left( \frac{- 2}{3} \right)^9 = \frac{1}{2} \left( \frac{2}{3} \right)^8 \]
\[\text { Thus, the 10th term of the given GP is } \frac{1}{2} \left( \frac{2}{3} \right)^8 .\]
APPEARS IN
संबंधित प्रश्न
Evaluate `sum_(k=1)^11 (2+3^k )`
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
Show that the sequence <an>, defined by an = \[\frac{2}{3^n}\], n ϵ N is a G.P.
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Find the 4th term from the end of the G.P.
\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Find the sum of the following serie to infinity:
8 + \[4\sqrt{2}\] + 4 + ... ∞
Find the sum of the terms of an infinite decreasing G.P. in which all the terms are positive, the first term is 4, and the difference between the third and fifth term is equal to 32/81.
Find an infinite G.P. whose first term is 1 and each term is the sum of all the terms which follow it.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
For the G.P. if r = `1/3`, a = 9 find t7
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The numbers x − 6, 2x and x2 are in G.P. Find x
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. if a = 2, r = 3, Sn = 242 find n
For a G.P. If t4 = 16, t9 = 512, find S10
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Select the correct answer from the given alternative.
The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –
Answer the following:
Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.