Advertisements
Advertisements
प्रश्न
Find the 4th term from the end of the G.P.
उत्तर
\[\text { Here, first term, } a = \frac{2}{27}\]
\[\text { Common ratio}, r = \frac{a_2}{a_1} = \frac{\frac{2}{9}}{\frac{2}{27}} = 3 \]
\[\text { Last term, } l = 162\]
\[\text { After reversing the given G . P . , we get another G . P . whose first term is l and common ratio is } \frac{1}{r} . \]
\[ \therefore 4th \text { term from the end } = l \left( \frac{1}{r} \right)^{4 - 1} = (162) \left( \frac{1}{3} \right)^3 = 6\]
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following serie:
5 + 55 + 555 + ... to n terms;
If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that:
\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If a, b, c, d are in G.P., prove that:
(a2 − b2), (b2 − c2), (c2 − d2) are in G.P.
Write the product of n geometric means between two numbers a and b.
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Answer the following:
Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.
The third term of G.P. is 4. The product of its first 5 terms is ______.
If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.