Advertisements
Advertisements
प्रश्न
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
उत्तर
(x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ...to n terms;
Let Sn = (x + y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ...to n terms
Let us multiply and divide by (x – y) we get,
Sn = `1/(x – y)` [(x + y)(x – y) + (x2 + xy + y2)(x – y) ...upto n terms]
(x – y)Sn = (x2 – y2) + x3 + x2y + xy2 – x2y – xy2 – y3 ...upto n terms
(x – y)Sn = (x2 + x3 + x4 + ...n terms) – (y2 + y3 + y4 +...n terms)
By using the formula,
Sum of GP for n terms = `(a(1 – r^n))/(1 – r)`
We have two G.Ps in the above sum, so,
`(x – y) S_n = x^2((x^n – 1)/(x – 1)) – y^2((y^n – 1)/(y – 1))`
` S_n = 1/(x – y) . {x^2((x^n – 1)/(x – 1)) – y^2((y^n – 1)/(y – 1))}`
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Which term of the G.P. :
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
The sum of n terms of the G.P. 3, 6, 12, ... is 381. Find the value of n.
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
Find the geometric means of the following pairs of number:
a3b and ab3
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after n years.
The numbers x − 6, 2x and x2 are in G.P. Find x
The numbers x − 6, 2x and x2 are in G.P. Find nth term
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Express the following recurring decimal as a rational number:
`2.bar(4)`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Select the correct answer from the given alternative.
If for a G.P. `"t"_6/"t"_3 = 1458/54` then r = ?
If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`