हिंदी

Find the Sum of the Following Series: 9 + 99 + 999 + ... to N Terms; - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum of the following series:

9 + 99 + 999 + ... to n terms;

उत्तर

 We have,
9 + 99 + 999 + ... n terms

\[= \left( 9 + 99 + 999 + . . . + \text { to n terms } \right)\]

\[ = \left\{ \left( 10 - 1 \right) + \left( {10}^2 - 1 \right) + \left( {10}^3 - 1 \right) + . . . + \left( {10}^n - 1 \right) \right\}\]

\[ = \left\{ \left( 10 + {10}^2 + {10}^3 + . . . + {10}^n \right) \right\} - \left( 1 + 1 + 1 + 1 . . .\text {  n times } \right)\]

\[ = \left\{ 10 \times \frac{\left( {10}^n - 1 \right)}{10 - 1} - n \right\} \]

\[ = \left\{ \frac{10}{9}\left( {10}^n - 1 \right) - n \right\}\]

\[ = \frac{1}{9}\left\{ {10}^{n + 1} - 9n - 10 \right\}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.3 [पृष्ठ २८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.3 | Q 4.3 | पृष्ठ २८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Which term of the following sequence:

`1/3, 1/9, 1/27`, ...., is `1/19683`?


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


If a, b, c are in G.P., prove that:

(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.


Insert 5 geometric means between 16 and \[\frac{1}{4}\] .


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


For the G.P. if r = `1/3`, a = 9 find t7


The numbers 3, x, and x + 6 form are in G.P. Find 20th term.


For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


If one invests Rs. 10,000 in a bank at a rate of interest 8% per annum, how long does it take to double the money by compound interest? [(1.08)5 = 1.47]


Express the following recurring decimal as a rational number:

`2.3bar(5)`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Select the correct answer from the given alternative.

Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


The sum or difference of two G.P.s, is again a G.P.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


If the sum of an infinite GP a, ar, ar2, ar3, ...... . is 15 and the sum of the squares of its each term is 150, then the sum of ar2, ar4, ar6, .... is ______.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×