हिंदी

For the following G.P.s, find Sn 0.7, 0.07, 0.007, ..... - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For the following G.P.s, find Sn

0.7, 0.07, 0.007, .....

योग

उत्तर

a = 0.7 = `7/10`, r = `0.07/0.7 = 1/10 < 1`

Sn = `("a"(1 - "r"^"n"))/(1 - "r")`, for r < 1

= `(7/10[1 - (1/10)^"n"])/(1 - 1/10)`

= `7/9 (1 - 1/10^"n")`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.2 | Q 1. (iii) | पृष्ठ ३१

संबंधित प्रश्न

The 4th term of a G.P. is square of its second term, and the first term is –3. Determine its 7thterm.


Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


Find three numbers in G.P. whose sum is 65 and whose product is 3375.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


Write the product of n geometric means between two numbers a and b

 


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


Check whether the following sequence is G.P. If so, write tn.

2, 6, 18, 54, …


The numbers x − 6, 2x and x2 are in G.P. Find x


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. a = 2, r = `-2/3`, find S6


For a G.P. If t3 = 20 , t6 = 160 , find S7


If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


Answer the following:

If p, q, r, s are in G.P., show that (pn + qn), (qn + rn) , (rn + sn) are also in G.P.


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×