हिंदी

Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … ARn-1 form a G.P, and find the common ratio - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio

योग

उत्तर

% Sequence a, ar, ar2, …. The sequence formed by the product of arn – 1 and the corresponding terms of A, AR, AR2, .... ARn – 1

`("Second term")/("First term")` = `(arAR)/(aA) = rR`

`("Third term")/("Second term")` = `(ar^2 AR^2)/(arAR) = rR`

Thus, the above sequence forms a G.P. and the common ratio is rR.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 9 Sequences and Series
Exercise 9.3 | Q 20 | पृष्ठ १९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.


Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Evaluate `sum_(k=1)^11 (2+3^k )`


Find the 4th term from the end of the G.P.

\[\frac{1}{2}, \frac{1}{6}, \frac{1}{18}, \frac{1}{54}, . . . , \frac{1}{4374}\]


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


Check whether the following sequence is G.P. If so, write tn.

1, –5, 25, –125 …


For the G.P. if r = `1/3`, a = 9 find t7


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


The third term of a G.P. is 4, the product of the first five terms is ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×