हिंदी

Answer the following: Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10. - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.

योग

उत्तर

Let the five numbers in G.P. be `"a"/"r"^2, "a"/"r","a", "ar", "ar"^2`

Since their product is 243,

`"a"/"r"^2."a"/r."a"."ar"."ar"^2`= 243

∴ a5 = 35

∴ a = 3

Also, the sum of second and fourth is 10

∴ `"a"/"r" + "ar"` = 10

∴ `3/"r" + 3"r"` = 10r     ...[∵ a = 3]

∴ 3 + 3r2 = 10r

∴ 3r2 − 10r + 3 = 0

∴ (r – 3)(3r – 1) = 0

∴ r – 3 = 0 or 3r – 1= 0

∴ r = 3 or r = `1/3`

Taking r = `3, "a"/"r"^2 = 3/9 = 1/3, "a"/"r" = 3/3` = 1, ar = 3 × 3 = 9,

ar2 = 3(3)2 = 27 and the five numbers are `1/3`, 1, 3, 9, 27

Taking r = `1/3, "a"/"r"^2 = 3/((1/9)) = 27, "a"/"r" = 3/((1/3))` = 9,

ar = `3(1/3)` = 1, ar2 = `3(1/3)^2 = 1/3`

and the five numbers are 27, 9, 3, 1, `1/3`

Hence, the required numbers in G.P. are `1/3`, 1, 3, 9, 27 or 27, 9, 3, 1, `1/3`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Miscellaneous Exercise 2.2 [पृष्ठ ४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Miscellaneous Exercise 2.2 | Q II. (6) | पृष्ठ ४१

संबंधित प्रश्न

Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following geometric progression:

4, 2, 1, 1/2 ... to 10 terms.


Find the sum of the following geometric series:

(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Express the recurring decimal 0.125125125 ... as a rational number.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are in G.P., prove that:

a (b2 + c2) = c (a2 + b2)


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in G.P., prove that the following is also in G.P.:

a2 + b2, ab + bc, b2 + c2


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For the G.P. if r = `1/3`, a = 9 find t7


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a G.P. if a = 2, r = 3, Sn = 242 find n


Express the following recurring decimal as a rational number:

`2.bar(4)`


Answer the following:

In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


If pth, qth, and rth terms of an A.P. and G.P. are both a, b and c respectively, show that ab–c . bc – a . ca – b = 1


The third term of G.P. is 4. The product of its first 5 terms is ______.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×