Advertisements
Advertisements
प्रश्न
The third term of G.P. is 4. The product of its first 5 terms is ______.
विकल्प
43
44
45
None of these
उत्तर
The third term of G.P. is 4. The product of its first 5 terms is 45.
Explanation:
Given that T3 = 4
⇒ ar3–1 = 4
⇒ ar2 = 4
Product of first 5 terms = a · ar · ar2 · ar3 · ar4
= a5r10
= (ar2)5
= (4)5
APPEARS IN
संबंधित प्रश्न
The sum of first three terms of a G.P. is 16 and the sum of the next three terms is 128. Determine the first term, the common ratio and the sum to n terms of the G.P.
Given a G.P. with a = 729 and 7th term 64, determine S7.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
Find the 4th term from the end of the G.P.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the sum of the following serie to infinity:
\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]
Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
Three numbers are in A.P. and their sum is 15. If 1, 3, 9 be added to them respectively, they form a G.P. Find the numbers.
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If the fifth term of a G.P. is 2, then write the product of its 9 terms.
If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if a = `7/243`, r = 3 find t6.
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
For a G.P. If t3 = 20 , t6 = 160 , find S7
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
For a G.P. if t2 = 7, t4 = 1575 find a
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.