हिंदी

If A, B, C, D Are in G.P., Prove That: (A2 + B2 + C2), (Ab + Bc + Cd), (B2 + C2 + D2) Are in G.P. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c, d are in G.P., prove that:

(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.

उत्तर

a, b, c and d are in G.P.

\[\therefore b^2 = ac\]

\[ad = bc \]

\[ c^2 = bd\]   .......(1)

\[\left( ab + bc + cd \right)^2 = \left( ab \right)^2 + \left( bc \right)^2 + \left( cd \right)^2 + 2a b^2 c + 2b c^2 d + 2abcd\]

\[ \Rightarrow \left( ab + bc + cd \right)^2 = a^2 b^2 + b^2 c^2 + c^2 d^2 + a b^2 c + a b^2 c + b c^2 d + b c^2 d + abcd + abcd\]

\[ \Rightarrow \left( ab + bc + cd \right)^2 = a^2 b^2 + b^2 c^2 + c^2 d^2 + b^2 \left( b^2 \right) + ac\left( ac \right) + c^2 \left( c^2 \right) + bd\left( bd \right) + bc\left( bc \right) + ad\left( ad \right) \left[ \text { Using } (1) \right]\]

\[ \Rightarrow \left( ab + bc + cd \right)^2 = a^2 b^2 + a^2 c^2 + a^2 d^2 + b^4 + b^2 c^2 + b^2 d^2 + c^2 b^2 + c^4 + c^2 d^2 \]

\[ \Rightarrow \left( ab + bc + cd \right)^2 = a^2 \left( b^2 + c^2 + d^2 \right) + b^2 \left( b^2 + c^2 + d^2 \right) + c^2 \left( b^2 + c^2 + d^2 \right)\]

\[ \Rightarrow \left( ab + bc + cd \right)^2 = \left( b^2 + c^2 + d^2 \right)\left( a^2 + b^2 + c^2 \right)\]

\[\text { Therefore, }\left( a^2 + b^2 + c^2 \right), \left( ab + bc + cd \right) \text{ and }\left( b^2 + c^2 + d^2 \right) \text {are also in G . P } .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 11.4 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


Which term of the G.P. :

\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Evaluate the following:

\[\sum^{11}_{n = 1} (2 + 3^n )\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.


If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 10 years.


The numbers x − 6, 2x and x2 are in G.P. Find x


The numbers x − 6, 2x and x2 are in G.P. Find 1st term


Express the following recurring decimal as a rational number:

`2.3bar(5)`


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


Select the correct answer from the given alternative.

The common ratio for the G.P. 0.12, 0.24, 0.48, is –


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

Find k so that k – 1, k, k + 2 are consecutive terms of a G.P.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×