Advertisements
Advertisements
प्रश्न
Which term of the G.P. :
\[\sqrt{3}, 3, 3\sqrt{3}, . . . \text { is } 729 ?\]
उत्तर
\[\text { Here, first term, }a = \sqrt{3} \]
\[\text { and common ratio }, r = \sqrt{3}\]
\[\text { Let the } n^{th} \text { term be } 729 . \]
\[ \therefore a_n = 729\]
\[ \Rightarrow a r^{n - 1} = 729\]
\[ \Rightarrow \left( \sqrt{3} \right) \left( \sqrt{3} \right)^{n - 1} = 729\]
\[ \Rightarrow (\sqrt{3} )^{n - 1} = \frac{\left( \sqrt{3} \right)^{12}}{\sqrt{3}} = (\sqrt{3} )^{11} \]
\[ \Rightarrow n - 1 = 11\]
\[ \Rightarrow n = 12\]
\[\text { Thus, the }{12}^{th}\text { term of the given G . P . is } 729 .\]
APPEARS IN
संबंधित प्रश्न
How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?
Find the value of n so that `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.
Find:
the ninth term of the G.P. 1, 4, 16, 64, ...
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.
If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.
If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.
The fractional value of 2.357 is
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The value of 91/3 . 91/9 . 91/27 ... upto inf, is
Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals
For the G.P. if a = `2/3`, t6 = 162, find r.
The numbers 3, x, and x + 6 form are in G.P. Find 20th term.
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
Express the following recurring decimal as a rational number:
`51.0bar(2)`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Select the correct answer from the given alternative.
Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.
If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c
If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.