हिंदी

Determine whether the sum to infinity of the following G.P.s exist, if exists find them: 2,43,89,1627,... - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`

योग

उत्तर

`2, 4/3, 8/9, 16/27, ...`

`"a" = 2, "r" = (4/3)/2 = 2/3, |"r"| < 1`

∴ Sum to infinity exists.

Sum to infinity = `"a"/(1 - "r")`

= `2/(1 - 2/3)`

= 6

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.3 [पृष्ठ ३३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.3 | Q 1. (ii) | पृष्ठ ३३

संबंधित प्रश्न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Which term of the following sequence: 

`2, 2sqrt2, 4,.... is 128`


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


If the G.P.'s 5, 10, 20, ... and 1280, 640, 320, ... have their nth terms equal, find the value of n.


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


If S1, S2, ..., Sn are the sums of n terms of n G.P.'s whose first term is 1 in each and common ratios are 1, 2, 3, ..., n respectively, then prove that S1 + S2 + 2S3 + 3S4 + ... (n − 1) Sn = 1n + 2n + 3n + ... + nn.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are in A.P. and a, x, b and b, y, c are in G.P., show that x2, b2, y2 are in A.P.


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


For the G.P. if a = `7/243`, r = 3 find t6.


For the G.P. if a = `2/3`, t6 = 162, find r.


Which term of the G.P. 5, 25, 125, 625, … is 510?


The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz


If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.


Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.


For the following G.P.s, find Sn

3, 6, 12, 24, ...


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Express the following recurring decimal as a rational number:

`0.bar(7)`


Express the following recurring decimal as a rational number:

`51.0bar(2)`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


The sum of the infinite series `1 + 5/6 + 12/6^2 + 22/6^3 + 35/6^4 + 51/6^5 + 70/6^6 + ....` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×