हिंदी

A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

A ball is dropped from a height of 10m. It bounces to a height of 6m, then 3.6m and so on. Find the total distance travelled by the ball

योग

उत्तर

Here, on the first bounce, the ball will go 6 m and it will return 6 m.

On second bounce, the ball will go 3.6 m and it will return 3.6 m, and so on and so forth….

∴ Total distance travelled by the ball is

= 10 + 2[6 + 3.6 + ...]

The terms 6, 3.6 …. are in G.P.

∴ a = 6, r = 0.6

Since, |r| = |0.6| < 1

∴ sum to infinity exists.

∴ Total distance travelled by the ball

`= 10 + 2 [6/(1 - 6/10)]`

`= 10 + 2[6/((10 - 6)/10)]`

`= 10 + 2[(6 xx 10)/4]`

= 10 + 30

= 40 m

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.3 [पृष्ठ ३४]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.3 | Q 8 | पृष्ठ ३४

संबंधित प्रश्न

Evaluate `sum_(k=1)^11 (2+3^k )`


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


Find :

the 10th term of the G.P.

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following geometric series:

\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8  terms };\]


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


Find the sum :

\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of the terms occupying the odd places. Find the common ratio of the G.P.


Let an be the nth term of the G.P. of positive numbers.

Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.


If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.


Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.


If a, b, c are in G.P., prove that:

\[a^2 b^2 c^2 \left( \frac{1}{a^3} + \frac{1}{b^3} + \frac{1}{c^3} \right) = a^3 + b^3 + c^3\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

 (a + b + c + d)2 = (a + b)2 + 2 (b + c)2 + (c + d)2


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Insert 6 geometric means between 27 and  \[\frac{1}{81}\] .


Find the geometric means of the following pairs of number:

−8 and −2


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


Mark the correct alternative in the following question: 

Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to 


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For the G.P. if r = `1/3`, a = 9 find t7


Which term of the G.P. 5, 25, 125, 625, … is 510?


For a G.P. a = 2, r = `-2/3`, find S6


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×