हिंदी

If A, B, C Are Three Distinct Real Numbers in G.P. and a + B + C = Xb, Then Prove that Either X < −1 Or X > 3. - Mathematics

Advertisements
Advertisements

प्रश्न

If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.

उत्तर

\[\text { Let r be the common ratio of the given G . P } . \]

\[ \therefore b = \text { ar and } c = a r^2 \]

\[\text { Now }, a + b + c = bx\]

\[ \Rightarrow a + ar + a r^2 = arx\]

\[ \Rightarrow r^2 + \left( 1 - x \right)r + 1 = 0\]

\[ \text { r is always a real number } . \]

\[ \therefore D \geq 0\]

\[ \Rightarrow \left( 1 - x \right)^2 - 4 \geq 0\]

\[ \Rightarrow x^2 - 2x - 3 \geq 0\]

\[ \Rightarrow \left( x - 3 \right)\left( x + 1 \right) \geq 0\]

\[ \Rightarrow x > 3 \text { or }x < - 1 \text { and } x \neq 3 \text { or } - 1 \left[ \because \text { a, b and c are distinct real numbers } \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.5 [पृष्ठ ४६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.5 | Q 22 | पृष्ठ ४६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the sum to 20 terms in the geometric progression 0.15, 0.015, 0.0015,…


If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Let S be the sum, P the product and R the sum of reciprocals of n terms in a G.P. Prove that P2Rn = Sn


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


If a, b, c are in A.P,; b, c, d are in G.P and ` 1/c, 1/d,1/e` are in A.P. prove that a, c, e are in G.P.

 

Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Which term of the G.P. :

\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, \frac{1}{4\sqrt{2}}, . . . \text { is }\frac{1}{512\sqrt{2}}?\]


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.


The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

9 + 99 + 999 + ... to n terms;


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Find the sum of the following serie to infinity:

\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]


Express the recurring decimal 0.125125125 ... as a rational number.


The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.


Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


Find the geometric means of the following pairs of number:

a3b and ab3


If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is


If second term of a G.P. is 2 and the sum of its infinite terms is 8, then its first term is


Given that x > 0, the sum \[\sum^\infty_{n = 1} \left( \frac{x}{x + 1} \right)^{n - 1}\] equals 


In a G.P. of even number of terms, the sum of all terms is five times the sum of the odd terms. The common ratio of the G.P. is 


For the G.P. if r = `1/3`, a = 9 find t7


For what values of x, the terms `4/3`, x, `4/27` are in G.P.?


Find four numbers in G.P. such that sum of the middle two numbers is `10/3` and their product is 1


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


The numbers 3, x, and x + 6 form are in G.P. Find nth term


For the following G.P.s, find Sn.

`sqrt(5)`, −5, `5sqrt(5)`, −25, ...


For a G.P. if a = 2, r = 3, Sn = 242 find n


Find the sum to n terms of the sequence.

0.2, 0.02, 0.002, ...


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

Find the nth term of the sequence 0.6, 0.66, 0.666, 0.6666, ...


Answer the following:

Find `sum_("r" = 1)^"n" (2/3)^"r"`


Answer the following:

If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2   


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×