हिंदी

Select the correct answer from the given alternative. Which term of the geometric progression 1, 2, 4, 8, ... is 2048 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Select the correct answer from the given alternative.

Which term of the geometric progression 1, 2, 4, 8, ... is 2048

विकल्प

  • 10th 

  • 11th 

  • 12th 

  • 13th 

MCQ

उत्तर

12th 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Miscellaneous Exercise 2.1 [पृष्ठ ४१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Miscellaneous Exercise 2.1 | Q I. (4) | पृष्ठ ४१

संबंधित प्रश्न

If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

−2/3, −6, −54, ...


Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...


Find : 

nth term of the G.P.

\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?

 

If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


If \[\frac{a + bx}{a - bx} = \frac{b + cx}{b - cx} = \frac{c + dx}{c - dx}\] (x ≠ 0), then show that abc and d are in G.P.


Find three numbers in G.P. whose product is 729 and the sum of their products in pairs is 819.


Find the sum of the following geometric progression:

(a2 − b2), (a − b), \[\left( \frac{a - b}{a + b} \right)\] to n terms;


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.


Find the sum of the following serie to infinity:

8 +  \[4\sqrt{2}\] + 4 + ... ∞


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If A1, A2 be two AM's and G1G2 be two GM's between and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]


If A be one A.M. and pq be two G.M.'s between two numbers, then 2 A is equal to 


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


Check whether the following sequence is G.P. If so, write tn.

3, 4, 5, 6, …


Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.


The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.


Answer the following:

Which 2 terms are inserted between 5 and 40 so that the resulting sequence is G.P.


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


The sum or difference of two G.P.s, is again a G.P.


If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×