Advertisements
Advertisements
प्रश्न
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
उत्तर
We have,
\[ a_1 = \frac{- 2}{3} , a_2 = - 6, a_3 = - 54\]
\[\text { Now }, \frac{a_2}{a_1} = \frac{- 6}{\frac{- 2}{3}} = 9, \frac{a_3}{a_2} = \frac{- 54}{- 6} = 9 \]
\[ \therefore \frac{a_2}{a_1} = \frac{a_3}{a_2} = 9\]
\[\text { Thus, } a_1 , a_2 \text { and } a_3 \text { are in G . P . , where } a = \frac{- 2}{3}\text { and } r = 9 .\]
APPEARS IN
संबंधित प्रश्न
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Which term of the following sequence:
`1/3, 1/9, 1/27`, ...., is `1/19683`?
If the 4th, 10th and 16th terms of a G.P. are x, y and z, respectively. Prove that x, y, z are in G.P.
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Find :
nth term of the G.P.
\[\sqrt{3}, \frac{1}{\sqrt{3}}, \frac{1}{3\sqrt{3}}, . . .\]
Find the 4th term from the end of the G.P.
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.
If a, b, c are in G.P., prove that:
(a + 2b + 2c) (a − 2b + 2c) = a2 + 4c2.
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If a, b, c are in G.P., then prove that:
The two geometric means between the numbers 1 and 64 are
For the G.P. if r = − 3 and t6 = 1701, find a.
The numbers x − 6, 2x and x2 are in G.P. Find x
For the following G.P.s, find Sn.
`sqrt(5)`, −5, `5sqrt(5)`, −25, ...
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Find: `sum_("r" = 1)^10(3 xx 2^"r")`
Find: `sum_("r" = 1)^10 5 xx 3^"r"`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
The sum or difference of two G.P.s, is again a G.P.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
The sum of infinite number of terms of a decreasing G.P. is 4 and the sum of the terms to m squares of its terms to infinity is `16/3`, then the G.P. is ______.