Advertisements
Advertisements
प्रश्न
Select the correct answer from the given alternative.
If common ratio of the G.P is 5, 5th term is 1875, the first term is -
विकल्प
3
5
15
– 5
उत्तर
If common ratio of the G.P is 5, 5th term is 1875, the first term is 3
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
The 5th, 8th and 11th terms of a G.P. are p, q and s, respectively. Show that q2 = ps.
Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.
Show that the products of the corresponding terms of the sequences a, ar, ar2, …arn – 1 and A, AR, AR2, … `AR^(n-1)` form a G.P, and find the common ratio
If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`
The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.
The 4th term of a G.P. is square of its second term, and the first term is − 3. Find its 7th term.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If pth, qth, rth and sth terms of an A.P. be in G.P., then prove that p − q, q − r, r − s are in G.P.
If a, b, c are in A.P., b,c,d are in G.P. and \[\frac{1}{c}, \frac{1}{d}, \frac{1}{e}\] are in A.P., prove that a, c,e are in G.P.
The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .
If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
Check whether the following sequence is G.P. If so, write tn.
2, 6, 18, 54, …
Check whether the following sequence is G.P. If so, write tn.
3, 4, 5, 6, …
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
The fifth term of a G.P. is x, eighth term of a G.P. is y and eleventh term of a G.P. is z verify whether y2 = xz
Mosquitoes are growing at a rate of 10% a year. If there were 200 mosquitoes in the beginning. Write down the number of mosquitoes after 3 years.
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For the following G.P.s, find Sn
0.7, 0.07, 0.007, .....
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Find : `sum_("r" = 1)^oo (-1/3)^"r"`
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
Find the sum of infinite terms of `1 + 4/5 + 7/25 + 10/125 + 13/6225 + ...`
If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.