Advertisements
Advertisements
प्रश्न
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to ______.
विकल्प
1 : 1
(Common ratio)n : 1
(First term)2 : (Common ratio)2
None of these
उत्तर
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then P2 R3 : S3 is equal to 1 : 1.
Explanation:
Let us take a G.P. with three terms `a/r, a, ar`.
Then S = `a/r + a + ar = (a(r^2 + r + 1))/r`
P = a3
R = `r/a + 1/a + 1/ar`
= `1/a((r^2 + r + 1)/r)`
`(P^2R^3)/"S"^3 = (a^6 * 11/a^3 ((r^2 + r + 1)/r)^3)/(a^3((r^2 + r + 1)/r)^3` = 1
Therefore, the ratio is 1 : 1
APPEARS IN
संबंधित प्रश्न
Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).
Given a G.P. with a = 729 and 7th term 64, determine S7.
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
The sum of three numbers in G.P. is 14. If the first two terms are each increased by 1 and the third term decreased by 1, the resulting numbers are in A.P. Find the numbers.
The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Find the sum of the following geometric series:
\[\sqrt{2} + \frac{1}{\sqrt{2}} + \frac{1}{2\sqrt{2}} + . . .\text { to 8 terms };\]
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following serie to infinity:
\[1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^3} + \frac{1}{3^4} + . . . \infty\]
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
If a, b, c are in G.P., prove that the following is also in G.P.:
a2, b2, c2
If a, b, c, d are in G.P., prove that:
(a2 + b2 + c2), (ab + bc + cd), (b2 + c2 + d2) are in G.P.
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
The fractional value of 2.357 is
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The nth term of a G.P. is 128 and the sum of its n terms is 225. If its common ratio is 2, then its first term is
If a, b, c are in G.P. and x, y are AM's between a, b and b,c respectively, then
The numbers x − 6, 2x and x2 are in G.P. Find 1st term
For a G.P. if a = 2, r = 3, Sn = 242 find n
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`2, 4/3, 8/9, 16/27, ...`
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find : `sum_("n" = 1)^oo 0.4^"n"`
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
The sum of the first three terms of a G.P. is S and their product is 27. Then all such S lie in ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.