हिंदी

The Nth Term of a G.P. is 128 and the Sum of Its N Terms is 225. If Its Common Ratio is 2, Then Its First Term is - Mathematics

Advertisements
Advertisements

प्रश्न

The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is

विकल्प

  • (a) 1 

  • (b) 3 

  • (c) 8 

  • (d) none of these 

MCQ

उत्तर

\[a_n = 128, S_n = 225 \text{ and } r = 2\]
\[ a_n = 128\]
\[ \therefore a r^\left( n - 1 \right) = 128\]
\[ \Rightarrow 2^\left( n - 1 \right) a = 128\]
\[ \Rightarrow \frac{2^n a}{2} = 128\]
\[ \Rightarrow 2^n = \frac{256}{a} . . . . . . . . (i)\]
\[\text{ Also }, S_n = 225\]
\[ \Rightarrow a\left( \frac{r^n - 1}{r - 1} \right) = 225\]
\[ \Rightarrow a\left( \frac{2^n - 1}{2 - 1} \right) = 225\]
\[ \Rightarrow a\left( \frac{256}{a} - 1 \right) = 225 \left[ \text{ Using } (i) \right]\]
\[ \Rightarrow 256 - a = 225\]
\[ \Rightarrow a = 256 - 225\]
\[ \Rightarrow a = 31\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 20: Geometric Progression - Exercise 20.8 [पृष्ठ ५७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 20 Geometric Progression
Exercise 20.8 | Q 12 | पृष्ठ ५७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Given a G.P. with a = 729 and 7th term 64, determine S7.


Find four numbers forming a geometric progression in which third term is greater than the first term by 9, and the second term is greater than the 4th by 18.


If the pth , qth and rth terms of a G.P. are a, b and c, respectively. Prove that `a^(q - r) b^(r-p) c^(p-q) = 1`


Insert two numbers between 3 and 81 so that the resulting sequence is G.P.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


Find :

the 8th term of the G.P. 0.3, 0.06, 0.012, ...


Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.


The product of three numbers in G.P. is 216. If 2, 8, 6 be added to them, the results are in A.P. Find the numbers.


Find the sum of the following geometric series:

`3/5 + 4/5^2 + 3/5^3 + 4/5^4 + ....` to 2n terms;


Find the sum of the following geometric series:

x3, x5, x7, ... to n terms


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Find the sum of the following series:

7 + 77 + 777 + ... to n terms;


Find the sum of the following series:

0.6 + 0.66 + 0.666 + .... to n terms


How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\]  ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


A person has 2 parents, 4 grandparents, 8 great grandparents, and so on. Find the number of his ancestors during the ten generations preceding his own.


Find the sum of the following serie to infinity:

`2/5 + 3/5^2 +2/5^3 + 3/5^4 + ... ∞.`


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.


If a, b, c are in A.P. and a, b, d are in G.P., show that a, (a − b), (d − c) are in G.P.


The sum of two numbers is 6 times their geometric means, show that the numbers are in the ratio \[(3 + 2\sqrt{2}) : (3 - 2\sqrt{2})\] .


If (p + q)th and (p − q)th terms of a G.P. are m and n respectively, then write is pth term.


If logxa, ax/2 and logb x are in G.P., then write the value of x.


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


Check whether the following sequence is G.P. If so, write tn.

7, 14, 21, 28, …


For a G.P. if a = 2, r = 3, Sn = 242 find n


For a G.P. If t4 = 16, t9 = 512, find S10


Express the following recurring decimal as a rational number:

`2.bar(4)`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

If for a G.P. t3 = `1/3`, t6 = `1/81` find r


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


At the end of each year the value of a certain machine has depreciated by 20% of its value at the beginning of that year. If its initial value was Rs 1250, find the value at the end of 5 years.


If a, b, c, d are four distinct positive quantities in G.P., then show that a + d > b + c


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×