हिंदी

For a G.P. If t4 = 16, t9 = 512, find S10 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For a G.P. If t4 = 16, t9 = 512, find S10

योग

उत्तर

t4 = 16, t9 = 512 

tn = arn–1

∴ t4 = ar4–1 = ar3

∴ ar3 = 16

∴ a = `16/"r"^3`   ...(i)

Also, t9 = ar8

ar8 = 512

∴ `16/"r"^3 xx"r"^8` = 512

∴ r5 = 32

∴ r = 2

Substituting r = 2 in (i), we get

a  `16/2^3`

= `16/8`

= 2

Now, Sn = `("a"("r"^"n"- 1))/("r" - 1)`, for r > 1

∴ S10 = `(2(2^10 - 1))/(2 - 1)`

= 2(1024 – 1)

= 2046

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
अध्याय 2 Sequences and Series
Exercise 2.2 | Q 4. (ii) | पृष्ठ ३१

संबंधित प्रश्न

Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


For what values of x, the numbers  `-2/7, x, -7/2` are in G.P?


Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`


If a and b are the roots of are roots of x2 – 3x + p = 0 , and c, d are roots of x2 – 12x + q = 0, where a, b, c, d, form a G.P. Prove that (q + p): (q – p) = 17 : 15.


In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


Find the sum of the following serie:

5 + 55 + 555 + ... to n terms;


The 4th and 7th terms of a G.P. are \[\frac{1}{27} \text { and } \frac{1}{729}\] respectively. Find the sum of n terms of the G.P.


Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Find the sum of the following series to infinity:

10 − 9 + 8.1 − 7.29 + ... ∞


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


The sum of three numbers in G.P. is 56. If we subtract 1, 7, 21 from these numbers in that order, we obtain an A.P. Find the numbers.


If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.


Find the geometric means of the following pairs of number:

2 and 8


The value of 91/3 . 91/9 . 91/27 ... upto inf, is 


Let x be the A.M. and yz be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\]  is equal to 


The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to 


For the following G.P.s, find Sn.

p, q, `"q"^2/"p", "q"^3/"p"^2,` ...


For a G.P. a = 2, r = `-2/3`, find S6


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Find: `sum_("r" = 1)^10(3 xx 2^"r")`


Find: `sum_("r" = 1)^10 5 xx 3^"r"`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares


Select the correct answer from the given alternative.

If common ratio of the G.P is 5, 5th term is 1875, the first term is -


Answer the following:

For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r


Answer the following:

For a sequence , if tn = `(5^("n" - 2))/(7^("n" - 3))`, verify whether the sequence is a G.P. If it is a G.P., find its first term and the common ratio.


Answer the following:

If for a G.P. first term is (27)2 and seventh term is (8)2, find S8 


In a G.P. of even number of terms, the sum of all terms is 5 times the sum of the odd terms. The common ratio of the G.P. is ______.


The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 cm3 and the total surface area is 252cm2. The length of the longest edge is ______.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×