मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता ११ वी

For a G.P. If t4 = 16, t9 = 512, find S10 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

For a G.P. If t4 = 16, t9 = 512, find S10

बेरीज

उत्तर

t4 = 16, t9 = 512 

tn = arn–1

∴ t4 = ar4–1 = ar3

∴ ar3 = 16

∴ a = `16/"r"^3`   ...(i)

Also, t9 = ar8

ar8 = 512

∴ `16/"r"^3 xx"r"^8` = 512

∴ r5 = 32

∴ r = 2

Substituting r = 2 in (i), we get

a  `16/2^3`

= `16/8`

= 2

Now, Sn = `("a"("r"^"n"- 1))/("r" - 1)`, for r > 1

∴ S10 = `(2(2^10 - 1))/(2 - 1)`

= 2(1024 – 1)

= 2046

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 2: Sequences and Series - Exercise 2.2 [पृष्ठ ३१]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 11 Standard Maharashtra State Board
पाठ 2 Sequences and Series
Exercise 2.2 | Q 4. (ii) | पृष्ठ ३१

संबंधित प्रश्‍न

Given a G.P. with a = 729 and 7th term 64, determine S7.


Find a G.P. for which sum of the first two terms is –4 and the fifth term is 4 times the third term.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Find three numbers in G.P. whose sum is 38 and their product is 1728.


Find the sum of the following geometric series:

\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text {  to n terms }\]


Evaluate the following:

\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]


Evaluate the following:

\[\sum^{10}_{n = 2} 4^n\]


The ratio of the sum of first three terms is to that of first 6 terms of a G.P. is 125 : 152. Find the common ratio.


The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.


If S1, S2, S3 be respectively the sums of n, 2n, 3n terms of a G.P., then prove that \[S_1^2 + S_2^2\] = S1 (S2 + S3).


Prove that: (91/3 . 91/9 . 91/27 ... ∞) = 3.


The sum of three numbers which are consecutive terms of an A.P. is 21. If the second number is reduced by 1 and the third is increased by 1, we obtain three consecutive terms of a G.P. Find the numbers.


If a, b, c, d are in G.P., prove that:

\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]


If a, b, c, d are in G.P., prove that:

(b + c) (b + d) = (c + a) (c + d)


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


If xa = xb/2 zb/2 = zc, then prove that \[\frac{1}{a}, \frac{1}{b}, \frac{1}{c}\] are in A.P.

  

Find the geometric means of the following pairs of number:

2 and 8


If the fifth term of a G.P. is 2, then write the product of its 9 terms.


Write the product of n geometric means between two numbers a and b

 


A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?


Find the sum to n terms of the sequence.

0.5, 0.05, 0.005, ...


For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


If the first term of the G.P. is 6 and its sum to infinity is `96/17` find the common ratio.


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


Find GM of two positive numbers whose A.M. and H.M. are 75 and 48


Select the correct answer from the given alternative.

The sum of 3 terms of a G.P. is `21/4` and their product is 1 then the common ratio is –


Answer the following:

For a G.P. if t2 = 7, t4 = 1575 find a


If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.


If in a geometric progression {an}, a1 = 3, an = 96 and Sn = 189, then the value of n is ______.


Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×