Advertisements
Advertisements
प्रश्न
Find three numbers in G.P. whose sum is 38 and their product is 1728.
उत्तर
Let the terms of the the given G.P. be
\[\frac{12}{r} + 12 + 12r = 38\]
\[ \Rightarrow 12 r^2 + 12r + 12 = 38r\]
\[ \Rightarrow 12 r^2 - 26r + 12 = 0\]
\[ \Rightarrow 2\left( 6 r^2 - 13r + 6 \right) = 0\]
\[ \Rightarrow 6 r^2 - 13r + 6 = 0\]
\[ \Rightarrow \left( 3r - 2 \right)\left( 2r - 3 \right) = 0\]
\[ \Rightarrow r = \frac{2}{3}, \frac{3}{2}\]
Hence, the G.P. for a = 12 and r = \[\frac{2}{3}\] is 18, 12 and 8.
And, the G.P. for a = 12 and r = \[\frac{3}{2}\] is 8, 12 and 18.
Hence, the three numbers are 8, 12 and 18.
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`2, 2sqrt2, 4,.... is 128`
If the first and the nth term of a G.P. are a ad b, respectively, and if P is the product of n terms, prove that P2 = (ab)n.
If a, b, c and d are in G.P. show that (a2 + b2 + c2) (b2 + c2 + d2) = (ab + bc + cd)2 .
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.
In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
The sum of first three terms of a G.P. is 13/12 and their product is − 1. Find the G.P.
Find the sum of the following geometric series:
0.15 + 0.015 + 0.0015 + ... to 8 terms;
Evaluate the following:
\[\sum^{11}_{n = 1} (2 + 3^n )\]
Let an be the nth term of the G.P. of positive numbers.
Let \[\sum^{100}_{n = 1} a_{2n} = \alpha \text { and } \sum^{100}_{n = 1} a_{2n - 1} = \beta,\] such that α ≠ β. Prove that the common ratio of the G.P. is α/β.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively
\[\frac{2S S_1}{S^2 + S_1}\text { and } \frac{S^2 - S_1}{S^2 + S_1}\]
The sum of three numbers a, b, c in A.P. is 18. If a and b are each increased by 4 and c is increased by 36, the new numbers form a G.P. Find a, b, c.
If a, b, c, d are in G.P., prove that:
(b + c) (b + d) = (c + a) (c + d)
Find the geometric means of the following pairs of number:
−8 and −2
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]
Mark the correct alternative in the following question:
Let S be the sum, P be the product and R be the sum of the reciprocals of 3 terms of a G.P. Then p2R3 : S3 is equal to
For the G.P. if a = `7/243`, r = 3 find t6.
Which term of the G.P. 5, 25, 125, 625, … is 510?
For what values of x, the terms `4/3`, x, `4/27` are in G.P.?
A ball is dropped from a height of 80 ft. The ball is such that it rebounds `(3/4)^"th"` of the height it has fallen. How high does the ball rebound on 6th bounce? How high does the ball rebound on nth bounce?
For a G.P. sum of first 3 terms is 125 and sum of next 3 terms is 27, find the value of r
The value of a house appreciates 5% per year. How much is the house worth after 6 years if its current worth is ₹ 15 Lac. [Given: (1.05)5 = 1.28, (1.05)6 = 1.34]
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`-3, 1, (-1)/3, 1/9, ...`
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/5, (-2)/5, 4/5, (-8)/5, 16/5, ...`
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.
Answer the following:
If pth, qth and rth terms of a G.P. are x, y, z respectively. Find the value of xq–r .yr–p .zp–q
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.