मराठी

In a Gp the 3rd Term is 24 and the 6th Term is 192. Find the 10th Term. - Mathematics

Advertisements
Advertisements

प्रश्न

In a GP the 3rd term is 24 and the 6th term is 192. Find the 10th term.

उत्तर

\[\text { Let a be the first term and r be the common ratio } . \]

\[ \therefore a_3 = 24 \text { and } a_6 = 192\]

\[ \Rightarrow a r^2 = 24 \text { and } a r^5 = 192\]

\[ \Rightarrow \frac{a r^5}{a r^2} = \frac{192}{24}\]

\[ \Rightarrow r^3 = 8 \]

\[ \Rightarrow r^3 = 2^3 \]

\[ \Rightarrow r = 2\]

\[\text { Putting } r = 2 \text { in a }r^2 = 24\]

\[a \left( 2 \right)^2 = 24 \]

\[ \Rightarrow a = 6\]

\[\text { Now }, {10}^{th}\text {  term  }= a_{10} = a r^9 \]

\[\text { Putting a = 6 and r = 2 in } a_{10} = a r^9 \]

\[ \Rightarrow a_{10} = \left( 6 \right) \left( 2 \right)^9 = 3072\]

\[\text { Thus, the } {10}^{th}\text {  term of the G . P . is } 3072 .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 20: Geometric Progression - Exercise 20.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
पाठ 20 Geometric Progression
Exercise 20.1 | Q 14 | पृष्ठ १०

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`


Which term of the following sequence:

`sqrt3, 3, 3sqrt3`, .... is 729?


The sum of first three terms of a G.P. is  `39/10` and their product is 1. Find the common ratio and the terms.


How many terms of G.P. 3, 32, 33, … are needed to give the sum 120?


The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.


If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.


Find the 4th term from the end of the G.P.

\[\frac{2}{27}, \frac{2}{9}, \frac{2}{3}, . . . , 162\]

Which term of the G.P. :

\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]


If 5th, 8th and 11th terms of a G.P. are p. q and s respectively, prove that q2 = ps.


Find the sum of the following geometric series:

 0.15 + 0.015 + 0.0015 + ... to 8 terms;


Find the sum of the following series:

0.5 + 0.55 + 0.555 + ... to n terms.


The common ratio of a G.P. is 3 and the last term is 486. If the sum of these terms be 728, find the first term.


If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.


Find the sum of the following serie to infinity:

\[\frac{1}{3} + \frac{1}{5^2} + \frac{1}{3^3} + \frac{1}{5^4} + \frac{1}{3^5} + \frac{1}{56} + . . . \infty\]


Find the rational numbers having the following decimal expansion: 

\[0 . \overline3\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If S denotes the sum of an infinite G.P. S1 denotes the sum of the squares of its terms, then prove that the first term and common ratio are respectively

\[\frac{2S S_1}{S^2 + S_1}\text {  and } \frac{S^2 - S_1}{S^2 + S_1}\]


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that:

\[\frac{1}{a^2 - b^2} + \frac{1}{b^2} = \frac{1}{b^2 - c^2}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a2, b2, c2


If a, b, c, d are in G.P., prove that:

(a2 + b2), (b2 + c2), (c2 + d2) are in G.P.


If a, b, c are in A.P. and a, b, d are in G.P., then prove that a, a − b, d − c are in G.P.


Find the geometric means of the following pairs of number:

a3b and ab3


If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.


If in an infinite G.P., first term is equal to 10 times the sum of all successive terms, then its common ratio is 


If abc are in G.P. and xy are AM's between ab and b,c respectively, then 


For the G.P. if a = `7/243`, r = 3 find t6.


If for a sequence, tn = `(5^("n"-3))/(2^("n"-3))`, show that the sequence is a G.P. Find its first term and the common ratio


The numbers x − 6, 2x and x2 are in G.P. Find nth term


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`1/2, 1/4, 1/8, 1/16,...`


Express the following recurring decimal as a rational number:

`0.bar(7)`


Find `sum_("r" = 0)^oo (-8)(-1/2)^"r"` 


Select the correct answer from the given alternative.

Which of the following is not true, where A, G, H are the AM, GM, HM of a and b respectively. (a, b > 0)


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

Find three numbers in G.P. such that their sum is 35 and their product is 1000


If the pth and qth terms of a G.P. are q and p respectively, show that its (p + q)th term is `(q^p/p^q)^(1/(p - q))`


For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.


For an increasing G.P. a1, a2 , a3 ........., an, if a6 = 4a4, a9 – a7 = 192, then the value of `sum_(i = 1)^∞ 1/a_i` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×