Advertisements
Advertisements
प्रश्न
The sum of two numbers is 6 times their geometric mean, show that numbers are in the ratio `(3 + 2sqrt2) ":" (3 - 2sqrt2)`.
उत्तर
Let the two numbers be a and b.
geometric mean of a and b = `sqrt"ab"`
Given: a + b = `6sqrt"ab"`
`"a"+ "b" + 2sqrt"ab" = 8sqrt"ab"`
`(sqrt"a" + sqrt"b")^2 = 8sqrt"ab"` .......(i)
`"a" + "b" - 2 sqrt"ab" = 4sqrt"ab"`
`(sqrt"a" - sqrt"b")^2 = 4sqrt"ab"` .......(ii)
Dividing equation (i) by (ii), we get
`(sqrt"a" + sqrt"b")^2/(sqrt"a" - sqrt"b")^2 = (8sqrt"ab")/(4sqrt"ab") = 2`
or `(sqrt"a" + sqrt"b")/(sqrt"a" - sqrt"b") = sqrt2/1`
⇒ `((sqrt"a" + sqrt"b") + (sqrt"a" - sqrt"b"))/((sqrt"a" + sqrt"b") - (sqrt"a" - sqrt"b")) = (sqrt2 + 1)/(sqrt2 - 1)`
`(2sqrt"a")/(2sqrt"b") = sqrt"a"/sqrt"b" = (sqrt2 + 1)/(sqrt2 - 1)`
On squaring, `"a"/"b" =(sqrt2 + 1)^2/(sqrt2 - 1)^2 = (3 + 2sqrt2)/(3 - 2sqrt2)`
Hence, `"a"/"b" =(3 + 2sqrt2)/(3 - 2sqrt2)`
APPEARS IN
संबंधित प्रश्न
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
If a, b, c, d are in G.P, prove that (an + bn), (bn + cn), (cn + dn) are in G.P.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
4, −2, 1, −1/2, ...
Which term of the progression 0.004, 0.02, 0.1, ... is 12.5?
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
Which term of the G.P. :
\[\frac{1}{3}, \frac{1}{9}, \frac{1}{27} . . \text { . is } \frac{1}{19683} ?\]
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
The sum of three numbers in G.P. is 21 and the sum of their squares is 189. Find the numbers.
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Evaluate the following:
\[\sum^n_{k = 1} ( 2^k + 3^{k - 1} )\]
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational number whose decimal expansion is \[0 . 423\].
One side of an equilateral triangle is 18 cm. The mid-points of its sides are joined to form another triangle whose mid-points, in turn, are joined to form still another triangle. The process is continued indefinitely. Find the sum of the (i) perimeters of all the triangles. (ii) areas of all triangles.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
If \[\frac{1}{a + b}, \frac{1}{2b}, \frac{1}{b + c}\] are three consecutive terms of an A.P., prove that a, b, c are the three consecutive terms of a G.P.
Find the geometric means of the following pairs of number:
2 and 8
If the sum of an infinite decreasing G.P. is 3 and the sum of the squares of its term is \[\frac{9}{2}\], then write its first term and common difference.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
For the G.P. if r = `1/3`, a = 9 find t7
Which term of the G.P. 5, 25, 125, 625, … is 510?
For a sequence, if Sn = 2(3n –1), find the nth term, hence show that the sequence is a G.P.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
9, 8.1, 7.29, ...
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Select the correct answer from the given alternative.
The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –
Select the correct answer from the given alternative.
Which term of the geometric progression 1, 2, 4, 8, ... is 2048
Select the correct answer from the given alternative.
Sum to infinity of a G.P. 5, `-5/2, 5/4, -5/8, 5/16,...` is –
Answer the following:
Find `sum_("r" = 1)^"n" (2/3)^"r"`
Answer the following:
If p, q, r, s are in G.P., show that (p2 + q2 + r2) (q2 + r2 + s2) = (pq + qr + rs)2
If a, b, c, d are in G.P., prove that a2 – b2, b2 – c2, c2 – d2 are also in G.P.
For a, b, c to be in G.P. the value of `(a - b)/(b - c)` is equal to ______.
Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.