Advertisements
Advertisements
प्रश्न
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
पर्याय
−2/5
−3/5
2/5
none of these
उत्तर
− \[\frac{2}{5}\] If the first term is 1, then, the G.P. will be\[1, r, r^2 , r^3 , . . .\]
\[\text{ Now }, 5 r^2 + 4r = 5\left( r^2 + \frac{4}{5}r \right)\]
\[ = 5\left( r^2 + \frac{4}{5}r + \frac{4}{25} - \frac{4}{25} \right)\]
\[ = 5 \left( r + \frac{2}{5} \right)^2 - \frac{4}{5}\]
\[\text{ This will be the least when } r + \frac{2}{5} = 0, i . e . r = - \frac{2}{5} .\]
APPEARS IN
संबंधित प्रश्न
Which term of the following sequence:
`sqrt3, 3, 3sqrt3`, .... is 729?
Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.
Find :
the 12th term of the G.P.
\[\frac{1}{a^3 x^3}, ax, a^5 x^5 , . . .\]
Which term of the progression 18, −12, 8, ... is \[\frac{512}{729}\] ?
The sum of first three terms of a G.P. is \[\frac{39}{10}\] and their product is 1. Find the common ratio and the terms.
Find the sum of the following geometric progression:
1, 3, 9, 27, ... to 8 terms;
Find the sum of the following geometric series:
(x +y) + (x2 + xy + y2) + (x3 + x2y + xy2 + y3) + ... to n terms;
Find the sum of the following series:
7 + 77 + 777 + ... to n terms;
If a and b are the roots of x2 − 3x + p = 0 and c, d are the roots x2 − 12x + q = 0, where a, b, c, d form a G.P. Prove that (q + p) : (q − p) = 17 : 15.
How many terms of the G.P. 3, \[\frac{3}{2}, \frac{3}{4}\] ..... are needed to give the sum \[\frac{3069}{512}\] ?
Find the sum of the following series to infinity:
10 − 9 + 8.1 − 7.29 + ... ∞
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
The sum of first two terms of an infinite G.P. is 5 and each term is three times the sum of the succeeding terms. Find the G.P.
If (a − b), (b − c), (c − a) are in G.P., then prove that (a + b + c)2 = 3 (ab + bc + ca)
Insert 5 geometric means between \[\frac{32}{9}\text{and}\frac{81}{2}\] .
If pth, qth and rth terms of a G.P. re x, y, z respectively, then write the value of xq − r yr − pzp − q.
If A1, A2 be two AM's and G1, G2 be two GM's between a and b, then find the value of \[\frac{A_1 + A_2}{G_1 G_2}\]
Write the product of n geometric means between two numbers a and b.
If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
If A be one A.M. and p, q be two G.M.'s between two numbers, then 2 A is equal to
If x = (43) (46) (46) (49) .... (43x) = (0.0625)−54, the value of x is
Check whether the following sequence is G.P. If so, write tn.
1, –5, 25, –125 …
For the G.P. if r = − 3 and t6 = 1701, find a.
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. a = 2, r = `-2/3`, find S6
If S, P, R are the sum, product, and sum of the reciprocals of n terms of a G.P. respectively, then verify that `["S"/"R"]^"n"` = P2
If Sn, S2n, S3n are the sum of n, 2n, 3n terms of a G.P. respectively, then verify that Sn (S3n – S2n) = (S2n – Sn)2.
Determine whether the sum to infinity of the following G.P.s exist, if exists find them:
`1/2, 1/4, 1/8, 1/16,...`
The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.
Find : `sum_("n" = 1)^oo 0.4^"n"`
Answer the following:
In a G.P., the fourth term is 48 and the eighth term is 768. Find the tenth term
Answer the following:
For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.
In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.
The third term of G.P. is 4. The product of its first 5 terms is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
The sum or difference of two G.P.s, is again a G.P.
If the expansion in powers of x of the function `1/((1 - ax)(1 - bx))` is a0 + a1x + a2x2 + a3x3 ....... then an is ______.