मराठी

Find the sum to indicated number of terms of the geometric progressions 7,21,37...n terms. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the sum to indicated number of terms of the geometric progressions `sqrt7, sqrt21,3sqrt7`...n terms.

बेरीज

उत्तर

The geometric series `sqrt7, sqrt21, 3sqrt7,...`

First term, a = `sqrt7`

Common ratio, r = `sqrt21/sqrt7 = sqrt3`

Sum of n terms = `("a"(1 - "r"^"n"))/(1 - "r")` when r > 1

= `(sqrt7 [(sqrt3)^"n" - 1])/("r" -1)`

= `(sqrt7 [(sqrt3)^("n"/2) - 1])/(sqrt3 -1) xx (sqrt3 + 1)/(sqrt3 + 1)`

= `(sqrt7 (sqrt3 + 1)(3^("n"/2) - 1))/2`

= `(sqrt7(1 + sqrt3))/2[(3)^"n"/2 - 1]`

= `(sqrt7(1 + sqrt3))/2[(3)^(n/2) - 1]`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Sequences and Series - Exercise 9.3 [पृष्ठ १९२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
पाठ 9 Sequences and Series
Exercise 9.3 | Q 8 | पृष्ठ १९२

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.


Find the sum to indicated number of terms in the geometric progressions 1, – a, a2, – a3, ... n terms (if a ≠ – 1).


Find the sum to indicated number of terms in the geometric progressions x3, x5, x7, ... n terms (if x ≠ ± 1).


Given a G.P. with a = 729 and 7th term 64, determine S7.


Find the value of n so that  `(a^(n+1) + b^(n+1))/(a^n + b^n)` may be the geometric mean between a and b.


If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.


The first term of a G.P. is 1. The sum of the third term and fifth term is 90. Find the common ratio of G.P.


if `(a+ bx)/(a - bx) = (b +cx)/(b - cx) = (c + dx)/(c- dx) (x != 0)` then show that a, b, c and d are in G.P.


Show that one of the following progression is a G.P. Also, find the common ratio in case:

4, −2, 1, −1/2, ...


Which term of the G.P. :

\[2, 2\sqrt{2}, 4, . . .\text {  is }128 ?\]


Find the sum of the following geometric series:

1, −a, a2, −a3, ....to n terms (a ≠ 1)


Find the rational numbers having the following decimal expansion: 

\[0 .\overline {231 }\]


Find the rational numbers having the following decimal expansion: 

\[0 . 6\overline8\]


If a, b, c are in G.P., prove that log a, log b, log c are in A.P.


If a, b, c are in G.P., prove that \[\frac{1}{\log_a m}, \frac{1}{\log_b m}, \frac{1}{\log_c m}\] are in A.P.


If a, b, c are in G.P., prove that:

\[\frac{(a + b + c )^2}{a^2 + b^2 + c^2} = \frac{a + b + c}{a - b + c}\]


If a, b, c are in G.P., prove that the following is also in G.P.:

a3, b3, c3


If S be the sum, P the product and R be the sum of the reciprocals of n terms of a GP, then P2 is equal to


If the sum of first two terms of an infinite GP is 1 every term is twice the sum of all the successive terms, then its first term is 


The nth term of a G.P. is 128 and the sum of its n terms  is 225. If its common ratio is 2, then its first term is


If x is positive, the sum to infinity of the series \[\frac{1}{1 + x} - \frac{1 - x}{(1 + x )^2} + \frac{(1 - x )^2}{(1 + x )^3} - \frac{(1 - x )^3}{(1 + x )^4} + . . . . . . is\]


Check whether the following sequence is G.P. If so, write tn.

`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...


The number of bacteria in a culture doubles every hour. If there were 50 bacteria originally in the culture, how many bacteria will be there at the end of 5thhour?


The numbers x − 6, 2x and x2 are in G.P. Find x


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`2, 4/3, 8/9, 16/27, ...`


Determine whether the sum to infinity of the following G.P.s exist, if exists find them:

`-3, 1, (-1)/3, 1/9, ...`


Express the following recurring decimal as a rational number:

`0.bar(7)`


Express the following recurring decimal as a rational number:

`2.bar(4)`


Express the following recurring decimal as a rational number:

`2.3bar(5)`


The sum of an infinite G.P. is 5 and the sum of the squares of these terms is 15 find the G.P.


The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares


Insert two numbers between 1 and −27 so that the resulting sequence is a G.P.


If the A.M. of two numbers exceeds their G.M. by 2 and their H.M. by `18/5`, find the numbers.


Select the correct answer from the given alternative.

The tenth term of the geometric sequence `1/4, (-1)/2, 1, -2,` ... is –


Answer the following:

Find the sum of the first 5 terms of the G.P. whose first term is 1 and common ratio is `2/3`


Answer the following:

For a sequence Sn = 4(7n – 1) verify that the sequence is a G.P.


Answer the following:

If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0


In a G.P. of positive terms, if any term is equal to the sum of the next two terms. Then the common ratio of the G.P. is ______.


The third term of a G.P. is 4, the product of the first five terms is ______.


Let `{a_n}_(n = 0)^∞` be a sequence such that a0 = a1 = 0 and an+2 = 2an+1 – an + 1 for all n ≥ 0. Then, `sum_(n = 2)^∞ a^n/7^n` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×