Advertisements
Advertisements
प्रश्न
Answer the following:
If a, b, c are in G.P. and ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have common roots then verify that pb2 – 2qba + ra2 = 0
उत्तर
a, b, c are in G.P.
∴ b2 = ac
ax2 + 2bx + c = 0 becomes
`"a"x^2 + 2sqrt("ac")x + "c"` = 0
`(sqrt("a")x + sqrt("c"))^2` = 0
∴ x = `(-sqrt("c"))/sqrt("a")`
∴ ax2 + 2bx + c = 0 and px2 + 2qx + r = 0 have a common root, x = `(-sqrt("c"))/sqrt("a")` Satisfying px2 + 2qx + r = 0
∴ `"p"."c"/"a" + 2"q".((-sqrt("c"))/sqrt("a")) + r` = 0
`"pc" - 2"q"sqrt("ac") + "ra"` = 0
`"p"."b"^2/"a" - 2"qb" + "ra"` = 0 ...`[because "b"^2 = "ac", "c" = "b"^2/"a", sqrt("c") = "b"/sqrt("a"), sqrt("ac") = "b"]`
∴ pb2 – 2qba + ra2 = 0
APPEARS IN
संबंधित प्रश्न
Find the 20th and nthterms of the G.P. `5/2, 5/4 , 5/8,...`
Find the 12th term of a G.P. whose 8th term is 192 and the common ratio is 2.
Evaluate `sum_(k=1)^11 (2+3^k )`
Find the sum to n terms of the sequence, 8, 88, 888, 8888… .
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
The sum of some terms of G.P. is 315 whose first term and the common ratio are 5 and 2, respectively. Find the last term and the number of terms.
A G.P. consists of an even number of terms. If the sum of all the terms is 5 times the sum of terms occupying odd places, then find its common ratio.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
\[a, \frac{3 a^2}{4}, \frac{9 a^3}{16}, . . .\]
Show that one of the following progression is a G.P. Also, find the common ratio in case:1/2, 1/3, 2/9, 4/27, ...
Find:
the 10th term of the G.P.
\[- \frac{3}{4}, \frac{1}{2}, - \frac{1}{3}, \frac{2}{9}, . . .\]
Find :
the 10th term of the G.P.
\[\sqrt{2}, \frac{1}{\sqrt{2}}, \frac{1}{2\sqrt{2}}, . . .\]
Which term of the G.P. :
\[2, 2\sqrt{2}, 4, . . .\text { is }128 ?\]
If a, b, c, d and p are different real numbers such that:
(a2 + b2 + c2) p2 − 2 (ab + bc + cd) p + (b2 + c2 + d2) ≤ 0, then show that a, b, c and d are in G.P.
Find the sum of the following geometric progression:
4, 2, 1, 1/2 ... to 10 terms.
Find the sum of the following geometric series:
1, −a, a2, −a3, ....to n terms (a ≠ 1)
Find the sum of the following geometric series:
\[\sqrt{7}, \sqrt{21}, 3\sqrt{7}, . . .\text { to n terms }\]
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the sequence \[\sqrt{3}, 3, 3\sqrt{3},\] ... must be taken to make the sum \[39 + 13\sqrt{3}\] ?
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
The fifth term of a G.P. is 81 whereas its second term is 24. Find the series and sum of its first eight terms.
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is \[\frac{1}{r^n}\].
If Sp denotes the sum of the series 1 + rp + r2p + ... to ∞ and sp the sum of the series 1 − rp + r2p − ... to ∞, prove that Sp + sp = 2 . S2p.
Find the rational numbers having the following decimal expansion:
\[0 .\overline {231 }\]
Show that in an infinite G.P. with common ratio r (|r| < 1), each term bears a constant ratio to the sum of all terms that follow it.
If a, b, c are in G.P., prove that:
a (b2 + c2) = c (a2 + b2)
If a, b, c, d are in G.P., prove that:
\[\frac{ab - cd}{b^2 - c^2} = \frac{a + c}{b}\]
If the 4th, 10th and 16th terms of a G.P. are x, y and z respectively. Prove that x, y, z are in G.P.
Find the geometric means of the following pairs of number:
a3b and ab3
If pth, qth and rth terms of an A.P. are in G.P., then the common ratio of this G.P. is
The sum of an infinite G.P. is 4 and the sum of the cubes of its terms is 92. The common ratio of the original G.P. is
The two geometric means between the numbers 1 and 64 are
Check whether the following sequence is G.P. If so, write tn.
`sqrt(5), 1/sqrt(5), 1/(5sqrt(5)), 1/(25sqrt(5))`, ...
If p, q, r, s are in G.P. show that p + q, q + r, r + s are also in G.P.
For the following G.P.s, find Sn.
p, q, `"q"^2/"p", "q"^3/"p"^2,` ...
For a G.P. if a = 2, r = 3, Sn = 242 find n
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the areas of all the squares
Find GM of two positive numbers whose A.M. and H.M. are 75 and 48
Answer the following:
For a G.P. a = `4/3` and t7 = `243/1024`, find the value of r
Let A1, A2, A3, .... be an increasing geometric progression of positive real numbers. If A1A3A5A7 = `1/1296` and A2 + A4 = `7/36`, then the value of A6 + A8 + A10 is equal to ______.