Advertisements
Advertisements
प्रश्न
Evaluate `sum_(k=1)^11 (2+3^k )`
उत्तर
`sum_("k" = 1)^11 (2 + 3^"k") = (2 + 3) + (2 + 3^2) + (2 + 3^3) + ......`up to 11 terms
= `2 × 11 + (3 + 3^2 + 3^3 + ......` up to 11 terms)
= `22 + (3(3^11 - 1))/(3 - 1)` ......... `[∵ "a" = 3, "r" = 3, "S" = ("a"("r"^"n" - 1))/("r" - 1)]`
= `22 + 3/2 (3^11 - 1)`
APPEARS IN
संबंधित प्रश्न
The sum of first three terms of a G.P. is `39/10` and their product is 1. Find the common ratio and the terms.
Find the sum of the products of the corresponding terms of the sequences `2, 4, 8, 16, 32 and 128, 32, 8, 2, 1/2`
Show that the ratio of the sum of first n terms of a G.P. to the sum of terms from (n + 1)th to (2n)th term is `1/r^n`.
If f is a function satisfying f (x +y) = f(x) f(y) for all x, y ∈ N such that f(1) = 3 and `sum_(x = 1)^n` f(x) = 120, find the value of n.
Show that one of the following progression is a G.P. Also, find the common ratio in case:
−2/3, −6, −54, ...
If the pth and qth terms of a G.P. are q and p, respectively, then show that (p + q)th term is \[\left( \frac{q^p}{p^q} \right)^\frac{1}{p - q}\].
Find three numbers in G.P. whose sum is 65 and whose product is 3375.
The product of three numbers in G.P. is 125 and the sum of their products taken in pairs is \[87\frac{1}{2}\] . Find them.
Find the sum of the following geometric series:
\[\frac{2}{9} - \frac{1}{3} + \frac{1}{2} - \frac{3}{4} + . . . \text { to 5 terms };\]
Find the sum of the following series:
9 + 99 + 999 + ... to n terms;
How many terms of the G.P. 3, 3/2, 3/4, ... be taken together to make \[\frac{3069}{512}\] ?
How many terms of the series 2 + 6 + 18 + ... must be taken to make the sum equal to 728?
Find the sum :
\[\sum^{10}_{n = 1} \left[ \left( \frac{1}{2} \right)^{n - 1} + \left( \frac{1}{5} \right)^{n + 1} \right] .\]
Find the sum of 2n terms of the series whose every even term is 'a' times the term before it and every odd term is 'c' times the term before it, the first term being unity.
Prove that: (21/4 . 41/8 . 81/16. 161/32 ... ∞) = 2.
Find the rational numbers having the following decimal expansion:
\[0 . \overline3\]
Find the rational numbers having the following decimal expansion:
\[3 . 5\overline 2\]
Find k such that k + 9, k − 6 and 4 form three consecutive terms of a G.P.
If a, b, c are three distinct real numbers in G.P. and a + b + c = xb, then prove that either x< −1 or x > 3.
If pth, qth and rth terms of an A.P. and G.P. are both a, b and c respectively, show that \[a^{b - c} b^{c - a} c^{a - b} = 1\]
Write the product of n geometric means between two numbers a and b.
If the first term of a G.P. a1, a2, a3, ... is unity such that 4 a2 + 5 a3 is least, then the common ratio of G.P. is
Let x be the A.M. and y, z be two G.M.s between two positive numbers. Then, \[\frac{y^3 + z^3}{xyz}\] is equal to
The product (32), (32)1/6 (32)1/36 ... to ∞ is equal to
For the G.P. if a = `2/3`, t6 = 162, find r.
Find three numbers in G.P. such that their sum is 21 and sum of their squares is 189.
Find five numbers in G.P. such that their product is 1024 and fifth term is square of the third term.
Find the sum to n terms of the sequence.
0.5, 0.05, 0.005, ...
Find the sum to n terms of the sequence.
0.2, 0.02, 0.002, ...
If the common ratio of a G.P. is `2/3` and sum to infinity is 12. Find the first term
The midpoints of the sides of a square of side 1 are joined to form a new square. This procedure is repeated indefinitely. Find the sum of the perimeters of all the squares
Answer the following:
Find five numbers in G.P. such that their product is 243 and sum of second and fourth number is 10.
The third term of G.P. is 4. The product of its first 5 terms is ______.
The third term of a G.P. is 4, the product of the first five terms is ______.
Find a G.P. for which sum of the first two terms is – 4 and the fifth term is 4 times the third term.
If `e^((cos^2x + cos^4x + cos^6x + ...∞)log_e2` satisfies the equation t2 – 9t + 8 = 0, then the value of `(2sinx)/(sinx + sqrt(3)cosx)(0 < x ,< π/2)` is ______.
If 0 < x, y, a, b < 1, then the sum of the infinite terms of the series `sqrt(x)(sqrt(a) + sqrt(x)) + sqrt(x)(sqrt(ab) + sqrt(xy)) + sqrt(x)(bsqrt(a) + ysqrt(x)) + ...` is ______.